Atmospheric Horizontal Resolution Affects Tropical Climate Variability in Coupled Models

نویسندگان

  • A. NAVARRA
  • S. GUALDI
  • S. MASSON
  • P. DELECLUSE
  • T. YAMAGATA
چکیده

The effect of atmospheric horizontal resolution on tropical variability is investigated within the modified Scale Interaction Experiment (SINTEX) coupled model, SINTEX-Frontier (SINTEX-F), developed jointly at Istituto Nazionale di Geofisica e Vulcanologia (INGV), L’Institut Pierre-Simon Laplace (IPSL), and the Frontier Research System. The ocean resolution is not changed as the atmospheric model resolution is modified from spectral resolution 30 (T30) to spectral resolution 106 (T106). The horizontal resolutions of the atmospheric model T30 and T106 are investigated in terms of the coupling characteristics, frequency, and variability of the tropical ocean–atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution also has a somewhat negative impact on the variability in the east Indian Ocean. A dominant 2-yr peak for the Niño-3 variability in the T30 model is moderated in the T106 as it shifts to a longer time scale. At high resolution, new processes come into play, such as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific–Mexican coasts, and improved coastal forcing along the coast of South America. The delayed oscillator seems to be the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, and in the high-resolution model, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropical Atlantic Biases in CCSM4

This paper focuses on diagnosing biases in the seasonal climate of the tropical Atlantic in the twentiethcentury simulation of the Community Climate System Model, version 4 (CCSM4). The biases appear in both atmospheric and oceanic components. Mean sea level pressure is erroneously high by a few millibars in the subtropical highs and erroneously low in the polar lows (similar to CCSM3). As a re...

متن کامل

The 100 000-Yr Cycle in Tropical SST, Greenhouse Forcing, and Climate Sensitivity

The key scientific uncertainty in the global warming debate is the equilibrium climate sensitivity. Coupled atmosphere–ocean general circulation models predict a wide range of equilibrium climate sensitivities, with a consequently large spread of societal implications. Comparison of models with instrumental data has not been able to reduce the uncertainty in climate sensitivity. An alternative ...

متن کامل

Atlantic Climate Variability Experiment Prospectus

Energetic, large-scale variability is observed in the atmosphere and ocean of the Atlantic Sector on interannual and decadal time scales. It is manifested as coherent fluctuations in temperature , rainfall, surface pressure and temperature reaching eastward to central Europe and northern Asia, southward to subtropical West Africa and westward to North and South America with a myriad of well doc...

متن کامل

Origins of tropical-wide SST biases in CMIP multi-model ensembles

[1] Long-standing simulation errors limit the utility of climate models. Overlooked are tropical-wide errors, with sea surface temperature (SST) biasing high or low across all the tropical ocean basins. Our analysis based on Coupled Model Intercomparison Project (CMIP) multi-model ensembles shows that such SST biases can be classified into two types: one with a broad meridional structure and of...

متن کامل

Annual Cycle and ENSO in a Coupled Ocean–Atmosphere General Circulation Model

Results from multiyear integrations of a coupled ocean–atmosphere general circulation model are described. The atmospheric component is a rhomboidal 15, 18-level version of the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model. The oceanic component is the Geophysical Fluid Dynamics Laboratory ocean model with a horizontal domain extending from 708S to 658N. The oce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006